Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 9(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260645

RESUMO

Chronic, non-healing wounds impose a great burden on patients, professionals and health care systems worldwide. Diabetes mellitus (DM) and obesity are globally highly prevalent metabolic disorders and increase the risk for developing chronic wounds. Glucocorticoids (GCs) are endogenous stress hormones that exert profound effects on inflammation and repair systems. 11-beta-hydroxysteroid dehydrogenase 1 (11ß-HSD1) is the key enzyme which controls local GC availability in target tissues such as skin. Since treatment with GCs has detrimental side effects on skin integrity, causing atrophy and delayed wound healing, we asked whether the dysregulated expression of 11ß-HSD1 and consequently local GC levels in skin contribute to delayed wound healing in obese, diabetic db/db mice. We found increased expression of 11ß-HSD1 during disturbed wound healing and in the healthy skin of obese, diabetic db/db mice. Cell analysis revealed increased expression of 11ß-HSD1 in fibroblasts, myeloid cells and dermal white adipose tissue from db/db mice, while expression in keratinocytes was unaffected. Among diabetes- and obesity-related factors, insulin and insulin-like growth factor 1 down-regulated 11ß-HSD1 expression in fibroblasts and myeloid cells, while glucose, fatty acids, TNF-α and IL-1ß did not affect it. Insulin exerted its inhibitory effect on 11ß-HSD1 expression by activating PI3-kinase/Akt-signalling. Consequently, the inhibitory effect of insulin is attenuated in fibroblasts from insulin-resistant db/db mice. We conclude that insulin resistance in obesity and diabetes prevents the down-regulation of 11ß-HSD1, leading to elevated endogenous GC levels in diabetic skin, which could contribute to impaired wound healing in patients with DM.

2.
J Biophotonics ; 13(7): e201960215, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32246559

RESUMO

Melanoma cells are often surrounded by hyaluronic acid (HA) rich environments, which are considered to promote tumor progression and metastasis. Induced effects in compound materials consisting of cells embedded in an extracellular matrix have been studied, however, alterations of the single cells have never been addressed. Here, we explicitly addressed single cell properties and measured HA-induced biomechanical changes via deformations induced solely by optical forces. With the optical stretcher setup, cells were deformed after culturing them in either the presence or absence of HA revealing the crucial interplay of HA with the CD44 receptor. To assess the role of CD44 in transducing effects of HA, we compared a CD44 expressing variant of the melanoma cell line RPM-MC to its natural CD44-negative counterpart. Our measurements revealed a significant stiffness change, which we attribute to changes of the actin cytoskeleton.


Assuntos
Ácido Hialurônico , Melanoma , Actinas/genética , Fenômenos Biofísicos , Linhagem Celular , Humanos , Receptores de Hialuronatos/genética
4.
J Cell Biol ; 211(5): 1057-75, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26644517

RESUMO

Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI(-/-) and KtyII(-/-)(K8) mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation.


Assuntos
Epiderme/metabolismo , Queratinas/metabolismo , Lipídeos/química , Mitocôndrias/metabolismo , Animais , Adesão Celular , Membrana Celular/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Filamentos Intermediários/metabolismo , Queratinócitos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteoma/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...